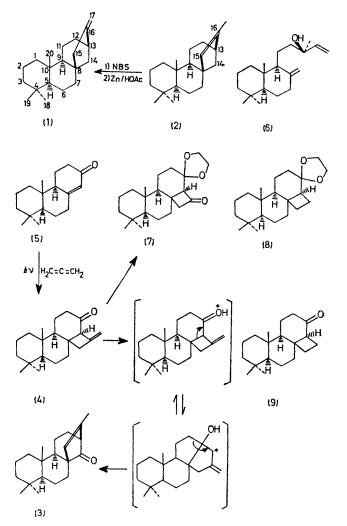
A Short Synthesis of (+)-Isophyllocladene and (+)-Phyllocladene

By (MRS.) Do KHAC MANH DUC, MARCEL FETIZON* and SYLVAIN LAZARE (Laboratoire de Stéréochimie, Bâtiment 420, Université de Paris-Sud, 91405 Orsay, France)


Summary Rearrangement of the ketone (4) obtained by photochemical cycloaddition of allene to $\Delta^{(14)}$ -podocarpen-13-one (5) leads to $(+)-\Delta^{15}$ -isophyllocladen-14one (3), which can be converted into (+)-isophyllocladene (2) or (+)-phyllocladene (1).

PHYLLOCLADENE (1) and isophyllocladene (2) occur in the leaf oil of various conifers.¹ Since the elucidation of their structures,² several multistep syntheses have been published.³

We now report that isophyllocladenone (3) is readily obtained from the cycloaddition product (4) of allene and (+)- $\Delta^{8(14)}$ -podocarpen-13-one (5), a degradation compound of manool (6).4

Cycloaddition of allene to the α,β -unsaturated ketone (5) on irradiation at low temperature is entirely regio- and stereo-specific.⁵ The structure of the adduct is confirmed by the following evidence; ketalisation of (4) in the presence of a very small amount of p-toluenesulphonic acid, and ozonolysis gave the cyclobutanone (7), m.p. 142-144°, ν (C=O): 1775 cm⁻¹. Its circular dichroism ($\Delta \epsilon - 0.97$; λ_{max} 298 nm) and n.m.r. spectrum are in agreement with the proposed structure. Wolff-Kishner reduction of the cyclobutanone (7) yields a crystalline ketal (8). Hydrolysis of the ketal gives the ketone (9) (m.p. $67-68^{\circ}$; $[\alpha]_{D}$ (CHCl₃) + 30°, $\Delta \epsilon$ +0.83; λ_{max} 299 nm) identical in all respects with a sample of known stereochemistry.4b The cyclobutane ring is therefore in the β -configuration.

Compound (4) rearranges to isophyllocladenone (3) when refluxed for 3 h in benzene in the presence of a large amount of p-toluenesulphonic acid (1:1 by weight).⁶ After chromatography and recrystallisation, a 50% yield of isophyllocladenone (3) is obtained. The n.m.r. spectrum and Cotton effect are in agreement with the expected structure, which is completely established by Wolff-Kishner reduction of $(3)^7$ to (+)-isophyllocladene (2) (m.p. 109-110°; $[\alpha]_{D}$ (CHCl₃) + 22°, $\Delta \epsilon$ + 1.2; λ_{max} 209 nm).⁸ N-bromosuccinimide bromination of isophyllocladene, followed by reduction with Zn-AcOH gives (+)-phyllocladene (1), as a crystalline compound (m.p. $95-96^{\circ}$, $[\alpha]_{p}$ (CHCl₃) +12°; $\Delta \epsilon - 3$; λ_{max} 203 nm).⁸ The i.r. spectra of (1) and (2) are identical with those published in the literature.⁹ The phyllocladene skeleton can therefore be built in two steps from a tricyclic precursor (5).

(Received, 28th January 1975; Com. 100.)

¹ R. T. Baker and G. H. Smith, The Pines of Australia Technical Museum Sydney, 1910; L. H. Briggs and M. D. Sutherland, J. Org. Chem., 1942, 7, 397. ² C. W. Brandt, New Zealand J. Sci. Technol., 1938, 20, 8; 1952, 34, 46; L. H. Briggs, B. F. Cain, R. C. Cambie, and B. R. Davis,

R. B. Kelley, J. Eber, and H. K. Hung, Canad. J. Chem., 1973, 51, 2534.

A similar rearrangement has been studied in detail in the case of simpler models, see R. L. Cargill, D. M. Pont, and S. O. Legrand, J. Org. Chem., 1969, 35, 357. 7 The reduction must be carried out under an inert atmosphere to prevent simultaneous reduction of the double bond; E. Fujita and

Y. Nagao, Yakugaku Zasshi, 1972, 92(11), 1405. ⁸ A. I. Scott and A. D. Wrixon, Tetrahedron, 1970, 26, 3695.

9 W. Bottomley, A. R. H. Cole, and D. E. White, J. Chem. Soc., 1955, 2624.

J. Chem. Soc., 1962, 1840.
^a R. B. Turner, K. H. Gänshürt, P. E. Shav, and J. D. Tauber, J. Amer. Chem. Soc., 1966, 88, 8, 1776; A. Tahara, M. Shimagaki, S. Ohara, and T. Nakata, Tetrahedron Letters, 1973, 19, 1701.

P. K. Grant and R. Hodges, J. Chem. Soc., 1960, 5274; (b) Do Khac Manh Duc, M. Fetizon, and J. P. Flament, Tetrahedron, in

the press